1. In an inner product space $M$, suppose that there are $x, y \in M$, such that

$$
|\langle x, y\rangle|=\|x\| \cdot\|y\|
$$

Prove that $x$ and $y$ are linear dependent. In other words, prove that there exists $\lambda_{1}, \lambda_{2} \in \mathbb{C}$, such that $\lambda_{1} x+\lambda_{2} y=0$ and at least one of $\lambda_{1}$ and $\lambda_{2}$ is not zero.
2. Let $M$ be a Hilbert space, and let $\left\{e_{1}, e_{2}, \cdots\right\} \subset M$, satisfying $\left\|e_{i}\right\|=1, \forall i \in \mathbb{N}_{\geq 1}$, and $\left\langle e_{i}, e_{j}\right\rangle=\delta_{i j}$, where $\delta$ is the Kronecker delta defined as

$$
\delta_{i, j}= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}
$$

a) [Bessel's Inequality] Prove that for any $x \in M$, we have

$$
\sum_{i=1}^{\infty}\left|\left\langle x, e_{i}\right\rangle\right|^{2} \leq\|x\|^{2}
$$

Hint: Just need to show that for any $n \in \mathbb{N}_{\geq 1}, \sum_{i=1}^{n}\left|\left\langle x, e_{i}\right\rangle\right|^{2} \leq$ $\|x\|^{2}$.
b) Assume $\left\{e_{1}, e_{2}, \cdots\right\}^{\perp}=\{0\}$. Prove that for all $x \in M$, we have

$$
\sum_{i=1}^{\infty}\left|\left\langle x, e_{i}\right\rangle\right|^{2}=\|x\|^{2}
$$

Hint: Let $x_{n}=\sum_{i=1}^{n}\left\langle x, e_{i}\right\rangle e_{i}$. Show that $x_{1}, x_{2}, \cdots$ is a Cauchy sequence. As $M$ is complete (because $H$ is a Hilbert space), $y=$ $\lim _{n \rightarrow \infty} x_{n}$ is in $H$. Easy to check that $\|y\|^{2}=\lim _{n \rightarrow \infty}\left\|x_{n}\right\|^{2}=$ $\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left|\left\langle x, e_{i}\right\rangle\right|^{2}$. It only remains to show that $x=y$. In other words, $\lim _{n \rightarrow \infty}\left\|x-x_{n}\right\|=0$.

